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Employing the elastic-hydrodynamic theory of the ferroelectric smectic C* phase, it is easily
seen that in most dynamic processes in the system, a coupling between director rotations and
macroscopic mass � ow exists. Taking this possibility of back� ow into account, the equations
governing the Goldstone mode dielectric susceptibility are rederived, and it is shown that
the corresponding rotational viscosity, measured in a conventional dielectric experiment, is
renormalized due to back� ow eŒects. An expression for this renormalization is given and
the crucial parameter, determining whether back� ow eŒects are of importance or not in the
dielectric experiment, is derived.

1. Introduction theoretical model explaining the mechanism of layer
rotations in the SmA* phase has been put forward byThe general dynamical behaviour of chiral smectic C*

(SmC*) liquid crystals can be described by a set of Carlsson and Osipov [12], while the generalization of the
theory to the SmC* phase is currently in progress [13].equations governing the time evolution of the c-director,

the macroscopic mass � ow and the orientation of In this work we consider a SmC* system for which
the smectic layers are assumed to be so strongly orientedthe smectic layer normal. The � rst dynamical studies

of SmC* liquid crystals presented in the literature by the substrates, that they remain � xed irrespective
of which torques are applied to them. The behaviour ofwere studies concerning the rotation of the c-director,

neglecting the possible onset of macroscopic � ow and the system is analysed theoretically using the model
devised by Carlsson et al. [6]. This model demandsalso assuming the smectic layers to remain � xed. Such

studies mainly concerned the switching dynamics of 20 viscosity coe� cients and 9 elastic constants to be
speci� ed in the most general case. A relevant questionferroelectric surface stabilized liquid crystal cells [1, 2]

and the dynamics of the dielectric response of ferro- in this context is how to design experiments in order
to determine these constants experimentally. Variouselectric SmC* liquid crystals [3, 4]. The equations used

in these studies are heuristic equations based on a set of experiments have been proposed (and performed) for
this purpose. Among these are the study of FréederickszLandau–Khalatnikov type equations. Using the basic

assumption that the smectic layers remain � xed, a transitions in diŒerent geometries [14, 15]. By incor-
porating the possibility of back� ow, i.e. the fact thatgeneral elastic-hydrodynamic theory of the SmC* phase,

formally derived in the language of rational mechanics, most reorientations of the c-director inevitably induce
a macroscopic � ow in the system, not only the elastichas been put forward by Leslie et al. [5]. This theory

demonstrates clearly how a reorientation of the c-director constants but also some relevant viscosity coe� cients
should be measurable. Such calculations have beencouples to a macroscopic mass � ow and vice versa. By

reformulating this theory, Carlsson et al. [6] showed published by Carlsson et al. [16, 17] who have demon-
strated how back� ow aŒects the switching behaviour ofhow one, in a simple way, can achieve physical insight

into this more general dynamical behaviour of the SmC* surface stabilized ferroelectric liquid crystal cells, not
only in a quantitative way but also qualitatively.phase. All theoretical models of the dynamics of the

SmC* phase referred to above, assume that the smectic Unfortunately, today there exists very little experi-
mental information on the values of the viscosity coe� -layer normal is � xed, although it is easily seen that most

motion in a SmC* system is associated with torques cients of the SmC* phase. The only exception is the
rotational viscosity cG associated with the rotationalacting to rotate the smectic layers [6]. Recently, it has

also been experimentally observed that in some circum- motion of the director around the smectic cone. This
coe� cient is related to one of the viscosity coe� cientsstances the smectic layers start rotating as a consequence

of a molecular reorientation in the system [7–11]. A de� ned by Carlsson et al. as cG 5 2l5 [6] and has been
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890 T. Carlsson

measured experimentally, essentially by two diŒerent
methods: either by the measurement of the response
time of a surface stabilized ferroelectric liquid crystal
cell [18] or by dielectric spectroscopy [19, 20]. None of
these experiments was analysed by a model incorporating
the possibility of back� ow. However, it has since
been clearly demonstrated that essentially all rotational
motion of the director around the smectic cone in the
SmC* phase is expected to be associated with back� ow
[16, 17]. In the present work it is shown how the
evaluation of the Goldstone mode dielectric constant is
aŒected by taking back� ow into account in the analysis
of the experiment. It is shown that back� ow eŒects
renormalizes cG so that the simple relation cG 5 2l5 is
changed into a more complex one, where a number of
other viscosity coe� cients enter the expression for cG .

The outline of the paper is as follows. In § 2 we de� ne
the quantities necessary to describe the system studied,
introducing coordinates and notations. We also specify Figure 1. The geometry of the system.
the geometry of the particular dielectric experiment
for which the in� uence of back� ow on the dynamical

duce the phase angle w, which is the angle between thebehaviour is investigated. In § 3 the general elastic-
c-director and the x-axis, counting w positive for a rotationhydrodynamic equations in the SmC* phase are sum-
around the positive z-axis. The spontaneous polarizationmarized. The general dynamic equations governing the
P of a SmC* liquid crystal is con� ned within the smecticGoldstone mode dielectric response of the SmC* phase,
planes and is at right angles [21] to the c-director. Wetaking back� ow into account, are derived in § 4. By solving
introduce a unit vector b according tothese equations, in § 5 it is shown how the switching

equation, and accordingly the Goldstone mode rotational b 5 a Ö c (1)
viscosity, is renormalized by the back� ow. Finally, in

which will coincide with the polarization vector provided§ 6, some inequalities that the viscosity coe� cients of the
that we are studying a (1 ) compound in the nomen-SmC* phase must ful� ll are discussed, and from these
clature of Clark and Lagerwall [22]. Assigning theit is shown that back� ow eŒects generally accelerate
polarization, Po , to be positive for a (1 ) compound andthe response of the system. We also derive the crucial
negative for a ( Õ ) compound we can writeparameter that determines how pronounced will be the

back� ow eŒects in the dielectric experiment described in P 5 Pob. (2)
the present paper.

If the sample studied is su� ciently thick, the direction
of the molecular tilt precesses on going from one

2. Geometry of the dielectric experiment: introduction smectic layer to another, forming a helicoidal structure.
to notation and de� nition of coordinates The in-plane spontaneous polarization, being perpen-

In this work a liquid crystalline sample in the bookshelf dicular to the tilt, also forms a helix and the macroscopic
geometry is studied. Thus the smectic layers, which are polarization of the system equals zero. Applying an
assumed to consist of uniform planes with � xed orientation, electric � eld E 5 Eẑ across the sample deforms the helix
are standing perpendicular to the surrounding glass plates, in two ways, changing the magnitude as well as the
which are taken to be parallel to the xz-plane. The basic direction of the tilt. The dielectric response, connected
quantities needed to describe the system are de� ned to director � uctuations of the SmC* phase, therefore
in � gure 1. The layer normal, taken to be parallel to consists of two contributions [4, 23]. These are the soft
the z-axis, is denoted a. The average orientation of the mode part corresponding to the changes of the magni-
molecular long axes is tilted with respect to the layer tude of the tilt, and the Goldstone mode part correspond-
normal, the tilt being denoted h. A unit vector, the director ing to changes in the tilt direction. Unless the system is
n, is introduced in this direction, while the projection of very close to the SmC*–SmA* phase transition temper-
the director into the smectic planes is described by a ature, Tc , the tilt can be assumed to be constant [24]
unit vector c, commonly called the c-director. In order and the soft mode dielectric response will be quenched

[23]. Only the case of constant tilt is studied in thisto describe the orientation of the c-director we intro-
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891Back� ow eVects in the Goldstone mode

work, thus assuming that the system is su� ciently far equations was derived by Leslie et al. [5] and has been
interpreted further and reformulated by Carlsson et al.below Tc . For most compounds the condition Tc Õ T > 1 K

is enough for this assumption to be valid. [6, 15]. The governing equations consist of one equation
for the balance of linear momentum,Due to the deformation of the helix in the presence

of the electric � eld a net macroscopic polarization 7 P
i 8 rvÇ

i
5 F

i
1 tÄ

ij,j
(6)is induced and the corresponding dielectric response x

of the system is de� ned as
and one equation for the balance of angular momentum,

C
i
1 e

ijk
tÄ
kj 5 0. (7)x 5 lim

E � 0

7 P
i 8

E
. (3)

In these equations, r is the density of the liquid crystal,
Assuming h to be constant, this quantity can be

F
i

is the sum of all external forces and tÄ
ij

is the viscous
calculated [4, 19] from the switching equation [1]

part of the stress tensor. Equation (7) can be interpreted
as a balance of the torque equation in which the termB3w ² Õ Po E sin w 5 cG wÇ . (4 )
e
ijk

tÄ
kj

is the viscous torque Cv, and C
i

represents the
This approach has been used by several authors sum of all other torques acting on the system. The
[3, 19, 20, 23, 25–28] to determine the Goldstone mode viscous part of the stress tensor tÄ

ij
is most conveniently

dielectric susceptibility experimentally . However, nobody expressed as the sum of its symmetrical (tÄ s
ij

) and
has analysed how back� ow eŒects, which are inevitably antisymmetrical (tÄ a

ij
) parts:

associated with director rotations in the system [16, 17],
aŒect the analysis of the dielectric experiment. In order tÄ

ij 5 tÄ s
ij

1 tÄ a
ij

. (8)
to do so, a velocity � eld v, describing a macroscopic

Adopting the usual summation convention andmass � ow in the system, is introduced. Studying a
introducing the following quantitiessu� ciently thick sample the in� uence from the bounding

plates can be neglected and the system is assumed to be
xy-invariant, i.e. the only spatial dependence all physical D

ij 5
1
2

(v
i,j

1 v
j,i

), W
ij 5

1
2

(v
i,j

Õ v
j,i

) (9)
quantities can adopt is a z-dependence. Neglecting
the possibility of transportation of matter between the Da

i 5 D
ij

a
j
, Dc

i 5 D
ij

c
j

(10)
smectic layers, the most general form of the velocity � eld

A
i
5 aÇ

i
Õ W

ik
a
k

C
i
5 cÇ

i
Õ W

ik
c
k

(11)can be written as v 5 v (z)x̂ 1 u (z)ŷ. Thus we make the
following ansatz for the quantities a, c, b, P, E, v and

the viscous stress tensor can be written as
the time derivative cÁ :

tÄ s
ij 5 m0D

ij
1 m1ap Da

pa
i
a
j
1 m2 (Da

i
a
j
1 Da

j
a
i
)a

x 5 0, a
y 5 0, a

z 5 1 (5 a)

1 m3cpDc
p c

i
c
j
1 m4 (Dc

i
c
j
1 Dc

j
c
i
)c

x 5 cos w(z), c
y 5 sin w(z), c

z 5 0 (5 b)

1 m5cpDa
p (a

i
c
j
1 a

j
c
i
) 1 l1 (A

i
a
j
1 A

j
a
i
)b

x 5 Õ sin w(z), b
y 5 cos w(z), b

z 5 0 (5 c)

1 l2 (C
i
c
j
1 C

j
c
i
) 1 l3cpAp (a

i
c
j
1 a

j
c
i
)P

x
5 Õ Po sin w(z), P

y
5 Po cos w(z), P

z
5 0 (5 d)

1 k1 (Da
i
c
j
1 Da

j
c
i
1 Dc

i
a
j
1 Dc

j
a
i
)E

x 5 0, E
y 5 E, E

z 5 0 (5 e)

1 k2[ap Da
p (a

i
c
j
1 a

j
c
i
) 1 2ap Dc

pa
i
a
j
]v

x 5 v(z), v
y 5 u(z), v

z 5 0 (5 f )

1 k3[cpDc
p (a

i
c
j
1 a

j
c
i
) 1 2apDc

p c
i
c
j
]cÇ

x 5 Õ wÇ sin w, cÇ
y 5 wÇ cos w, cÇ

z 5 0. (5 g)

1 t1 (C
i
a
j
1 C

j
a
i
) 1 t2 (A

i
c
j
1 A

j
c
i
)

It is the aim of the present work to show how the
1 2t3cpAp a

i
a
j
1 2t4cp Apc

i
c
j

(12)switching equation (4 ), and thus the Goldstone mode
dielectric response of the system, is modi� ed by including

tÄ a
ij 5 l1 (Da

j
a
i
Õ Da

i
a
j
) 1 l2 (Dc

j
c
i
Õ Dc

i
c
j
)back� ow eŒects through the velocity � eld (5 f ) into the

analysis of the behaviour of the system. 1 l3cp Da
p (a

i
c
j
Õ a

j
c
i
) 1 l4 (A

j
a
i
Õ A

i
a
j
)

1 l5 (C
j
c
i
Õ C

i
c
j
) 1 l6cp Ap (a

i
c
j

Õ a
j
c
i
)

3. Summary of the equations governing the elastic-
hydrodynamic behaviour of the smectic C* phase 1 t1 (Da

j
c
i
Õ Da

i
c
j
) 1 t2 (Dc

j
a
i
Õ Dc

i
a
j
)

In this section the equations governing the elastic-
1 t3ap Da

p (a
i
c
j
Õ a

j
c
i
) 1 t4cpDc

p (a
i
c
j

Õ a
j
c
i
)

hydrodynamic behaviour of the SmC* phase are sum-
marized. The basic mathematical formulation of these 1 t5 (A

j
c
i
Õ A

i
c
j
1 C

j
a
i
Õ C

i
a
j
). (13)
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892 T. Carlsson

These two equations de� ne the viscosity coe� cients of Similarly, the electric torque can be calculated as
the system.

The torques which we will have reason to incorporate
C e

z 5 Õ A ge

w
Õ

x
ge

w ¾
x

Õ
y

ge

w ¾
y

Õ
z

ge

w ¾
z
B (18)

in the analysis in this work are, apart from the viscous
torque Cv also the elastic torque C el, the electric torque

where ge is the electric free-energy density which, includingC e and the countertorque C c, which is the torque acting
both the ferroelectric and the dielectric coupling, can beon the system in order to keep the layers � xed [6, 12, 29],
writteni.e.

C 5 C el 1 C e 1 C c. (14)
ge 5 Õ

1
2

ea eo (n ¯ E )2 Õ P ¯ E (19)

It is possible to show that when studying the elastic-
dynamic behaviour of the c-director in a system for where ea is the dielectric anisotropy of the molecules
which the smectic layers are assumed to be � xed, the and eo is the permittivity of free space. This expression
z-component of the torque equation (7) is the relevant neglects the dielectric biaxiality [32] which is of no
one to study [6], while the countertorque needed to concern here as dielectric terms will be discarded anyway
stabilize the layers can be calculated by the aid of the in our treatment of the problem.
x- and y-components of this equation. This is because Equations (12), (13) and (17) de� ne 20 viscosity
the symmetry of the system implies that the most general coe� cients and 9 elastic constants. Using symmetry
form the countertorque can adopt is given by [6] arguments, it has been shown by Carlsson et al. [6, 15]

that these coe� cients should be expected to exhibit
C c 5 C c

x
x̂ 1 C c

y
ŷ (15) the following scaling properties with respect to the tilt

angle h:
where C c

x
and C c

y
are the x- and y-components of the

countertorque , respectively. t1 5 tÅ 1h, t2 5 tÅ 2h, t3 5 tÅ 3h, t5 5 tÅ 5h,
The z-component of the elastic torque can be calculated

k1 5 kÅ 1h, k2 5 kÅ 2h (20 a)as [6, 30]

l2 5 lÅ 2h2, l3 5 lÅ 3h2, l5 5 lÅ 5h2, l6 5 lÅ 6h2,
C el

z 5 Õ A gel

w
Õ

x

gel

w ¾
x

Õ
y

gel

w ¾
y

Õ
z

gel

w ¾
z
B (16) m4 5 mÅ 4h2, m5 5 mÅ 5h2 (20 b)

t4 5 tÅ 4h3, k3 5 kÅ 3h3 (20 c)
where gel is the elastic free energy density which is given

m3 5 mÅ 3h4 (20 d )by [15, 31]

A12 5 K 1 A
±
12 h2, A21 5 K 1 A

±
21h2,

gel 5
1
2

A12 (b ¯ = Ö c)2 1
1
2

A21 (c ¯ = Ö b)2 A11 5 Õ K 1 A± 11h2 (21 a)

B1 5 B± 1h2, B2 5 B± 2h2, B3 5 B± 3h2 (21 b)
Õ A11 C1

2
(c ¯ = Ö c Õ b ¯ = Ö b) Õ dD2

B13 5 B± 13 h3, C1 5 C
±
1h, C2 5 C

±
2h (21 c)

where the constants mÅ
i
, lÅ

i
, kÅ

i
, tÅ

i
, K, A

±
i
, B±

i
and C

±
i

can1
1
2

B1 ( = ¯ b)2 1
1
2

B2 ( = ¯ c)2
be assumed to be only weakly temperature dependent.
Furthermore, the coe� cients m0 , m1 , m2 , l1 and l4 , which
are those remaining in the SmA* phase, should be1

1
2

B3C1
2

(b ¯ = Ö b 1 c ¯ = Ö c) 1 qD2

expected to be independent of the tilt, exhibiting only a
weak temperature dependence. It should be noticed that

1 B13 ( = ¯ b)C1
2

(b ¯ = Ö b 1 c ¯ = Ö c)D essentially the same scaling of the viscosity coe� cient
given by equations (20 a–d) has also been obtained by
Osipov et al. [33] in a calculation based on a statistical1 C1 ( = ¯ c) (b ¯ = Ö c) 1 C2 ( = ¯ c) (c ¯ = Ö b). (17)
mechanical model.

The advantage in introducing this scaling of theIn this expression A
i
, B

i
and C

i
are the elastic constants

of the system, q is the wave vector of the pitch, and d is material parameters is that one achieves a better under-
standing of how the governing equations, and thusa material constant related to an inherent tendency of

the smectic layers to be non-planar [31]. The unit the quantities calculated from these, scale with respect
to h. To make the scaling of the equations complete,vectors b and c are those already de� ned in � gure 1.
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893Back� ow eVects in the Goldstone mode

one should also notice that the polarization is also tilt- Substituting the ansatz given in equations (5 a–g) into
the expressions of the elastic (17) and electric (19)dependent. As a reasonable approximation, we assume

that the polarization is proportional to the tilt [34, 35], energies, and only retaining linear terms in the electric
� eld, then the sum of these two energies is given byan approximation which is good except when the system

is close to the transition to the SmA* phase. Thus we
introduce a weakly temperature dependent quantity P± gel 1 ge 5

1
2

B3 (w ¾ Õ q)2 Õ PoE cos w (25)
according to

where w ¾ denotes the spatial derivative dw/dz. FromPo 5 P± h. (22)
equations (16), (18) and (25) the sum of the elastic and
electric torques is now calculated as

4. The dynamic equations governing the Goldstone
mode dielectric response with back� ow C el

z
1 C e

z 5 B3w ² Õ PoE sin w. (26)
In this section, the dynamic equations governing the

The viscous torque can be divided into two parts.response of the system in the presence of an electric
These are the shearing torque C s, being the torque� eld, applied in the y-direction, are derived. The correct
acting on the director due to velocity gradients, and theequations to study are the z-component of equation (7),
rotational torque C r which is the torque that appearsgoverning the rotational dynamics of the c-director, and
whenever the director is rotating. Thus in the casethe x- and y-components of equation (6), governing the
studied in this work, the shearing torque corresponds tomacroscopic � ow of matter in the system. As was pointed
the torque proportional to the velocity gradients,out in the previous section, the x- and y-components of

equation (7), for the balance of angular momentum, are
not discussed in the present work because, assuming the v ¾ 5

dv
dz

, u ¾ 5
du
dz

(27)
smectic layers to be � xed, these two equations are merely
of use to calculate the stabilizing countertorque needed

while the rotational torque is the torque proportionalto prevent the smectic layers from rotating [6, 12]. The
to the time derivative of the phase of the c-director, wÇ .z-component of the equation for the balance of linear
Due to the linearity of the stress tensor, C s and C r canmomentum, equation (6), regulates the � ow of matter
be calculated separately. Starting with the rotationalin the direction perpendicular to the smectic layers. One
torque, and only retaining terms that are proportionalcan show using this equation [6] that, in most cases, a
to wÇ , the rotational part of the antisymmetric stressmotion in the system induces a pressure gradient in this
tensor is given bydirection. Such a pressure gradient is the driving force

of permeation of molecules between the layers. However,
tÄ ar
ij 5 l5 (cÇ

j
c
i
Õ cÇ

i
c
j
) 1 t5 (cÇ

j
a
i
Õ cÇ

i
a
j
). (28)

neglecting the possibility of the transport of material
between the smectic layers, this equation is not needed From equations (5), (24) and (28), the z-component of
here. We note also that the only spatial dependence the rotational torque is calculated as
allowed for in the present model is along the helicoidal
axis, which coincides with the z-direction. C r

z 5 Õ 2l5wÇ . (29)

Thus it is clear that the viscosity associated with
4.1. Balance of angular momentum: derivation of the director rotations, often denoted as the Goldstone mode

switching equation rotational viscosity, cG , can be expressed as
Equation (7), which can be considered as an equation

for the balance of torques, can be expressed as cG 5 2l5 . (30)

C el 1 C e 1 C c 1 Cv 5 0. (23) To con� rm the entropy production of the system to be
positive, it is possible to show that the following

The z-component of the elastic and electric torques, C el
z inequality must hold [6]:

and C e

z
, are calculated from equations (16) and (18),

respectively, while the corresponding component of the l5 > 0. (31)
viscous torque Cv

z
can be calculated [6] from the anti-

The shearing torque is calculated from equationssymmetric part of the stress tensor, equation (13),
(9)–(11), (13) and (24) by neglecting the time derivativesaccording to
aÇ
i

and cÇ
i

in equation (11). Substituting the ansatz (5)
into equations (9)–(11), the only non-zero componentsC v

z
5 e

zjk
tÄ
kj

5 tÄ
yx

Õ tÄ
xy

5 2tÄ a
yx

. (24)
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894 T. Carlsson

of the quantities are rotational part and one shearing part. However, in the
treatment of linear momentum not only the antisym-
metric part, but also the full stress tensor needs to beD

xz 5 D
zx 5

1
2

v ¾ , D
yz 5 D

zy 5
1
2

u ¾ (32)
considered. The rotational part, tÄ r

ij
, can be expressed as

tÄ r
ij 5 l2 (cÇ

i
c
j
1 cÇ

j
c
i
) 1 t1 (cÇ

i
a
j
1 cÇ

j
a
i
) 1 l5 (cÇ

j
c
i
Õ cÇ

i
c
j
)W

xz 5 Õ W
zx 5

1

2
v ¾ , W

yz 5 Õ W
zy 5

1

2
u ¾ (33)

1 t5 (cÇ
j
a
i
Õ cÇ

i
a
j
) (41)

Da
x 5

1

2
v ¾ , Da

y 5
1

2
u ¾ , Dc

z 5
1

2
v ¾ cos w 1

1

2
u ¾ sin w

where only terms that are proportional to wÇ have been
retained. Substituting the ansatz given in (5) into

(34)
equation (41), the two components of the stress tensor
of interest here, are calculated as

A
x

5 Õ
1
2

v ¾ , A
y

5 Õ
1
2

u ¾ , Cz 5
1
2

v ¾ cos w 1
1
2

u ¾ sin w.
tÄ r
xz

5 (t5 Õ t1 )wÇ sin w (42 a)

(35) tÄ r
yz 5 Õ (t5 Õ t1 )wÇ cos w. (42 b)

The z-component of the shearing torque now takes the
In order to calculate the shearing part of the stress tensor,form
equations (32)–(35) are substituted into equations (12)

C s
z 5 (t5 Õ t1 )(u ¾ cos w Õ v ¾ sin w). (36) and (13):

The switching equation is now obtained by adding the
torques given by equations (26), (29) and (36), putting tÄ s

xz
5

1
2

v ¾ [mo 1 m2 Õ 2l1 1 l4the sum equal to zero,

1 (m4 1 m5 1 2l2 Õ 2l3 1 l5 1 l6 ) cos2 w]B3w ² Õ PoE sin w 5 2l5wÇ 1 (t5 Õ t1 ) (v ¾ sin w Õ u ¾ cos w).

(37)
1

1
2

u ¾ (m4 1 m5 1 2l2 Õ 2l3 1 l5 1 l6 ) sin w cos w
Comparing this equation with equation (4) one notices
that back� ow eŒects introduce the additional term pro- (43 a)
portional to (t5 Õ t1 ) on the right hand side of the
switching equation. To investigate how this term aŒects tÄ s

yz 5
1
2

v ¾ (m4 1 m5 1 2l2 Õ 2l3 1 l5 1 l6 ) sin w cos w
the solution of this equation, we have to study the
balance law of linear momentum, equation (6), in order

1
1
2

u ¾ [mo 1 m2 Õ 2l1 1 l4to obtain equations governing the quantities v(z) and
u (z).

1 (m4 1 m5 1 2l2 Õ 2l3 1 l5 1 l6 ) sin2 w].
4.2. Balance of linear momentum

(43 b)The equation for the balance of linear momentum is
now derived. Neglecting the inertia of the system and

From equations (40), (42) and (43), the � nal balance
assuming that no external body forces F

i
are present,

law for linear momentum is derived:
the x- and y-components of equation (6) reduce to

v ¾ [mo 1 m2 Õ 2l1 1 l4tÄ
xz,z 5 0, tÄ

yz,z 5 0 (38)

1 (m4 1 m5 1 2l2 Õ 2l3 1 l5 1 l6 ) cos2 w]if the only spatial dependence allowed for in the model
is a z-dependence. Equation (38) can be integrated to 1 u ¾ (m4 1 m5 1 2l2 Õ 2l3 1 l5 1 l6 ) sin w cos w
read

1 2(t5 Õ t1 )wÇ sin w 5 0 (44 a)
tÄ
xz

5 t
x
, tÄ

yz
5 t

y
(39)

v ¾ (m4 1 m5 1 2l2 Õ 2l3 1 l5 1 l6 ) sin w cos wwhere the integration constants tx and t
y

represent the
force per unit area exerted on the glass plates surround- 1 u ¾ [mo 1 m2 Õ 2l1 1 l4
ing the sample. Assuming this force to be negligible,

1 (m4 1 m5 1 2l2 Õ 2l3 1 l5 1 l6 ) sin2 w]equation (39) reduce to

Õ 2(t5 Õ t1 )wÇ cos w 5 0. (44 b)tÄ
xz 5 0, tÄ

yz 5 0. (40)

In the same manner as described for the torque The dynamic behaviour of the system studied is now
given by equations (37) and (44).equation, the stress tensor can be divided into one
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5. Solution of the dynamic equations: renormalization strongly anchored to the substrates, the system represents
a surface stabilized ferroelectric liquid crystal cellof the switching equation

Equations (37) and (44) represent the set of equations [36]. For such a system, the role of back� ow has been
discussed elsewhere [16, 17]. If, on the other hand, wegoverning the dynamic behaviour of the system when

back� ow eŒects have been taken into account. By com- study a su� ciently thick sample for which the in� uence
of the substrates on the anchoring of the director canparing equations (37) and (4) one notices that back� ow

eŒects manifest themselves through the presence of the be neglected, the situation models the experiment deter-
mining the Goldstone mode dielectric susceptibility.term (t5 Õ t1 )(v ¾ sin w Õ u¾ cos w) on the right hand side of

the switching equation. In order to perform a quantitative Here the macroscopic � ow is expected to be a two-
dimensional velocity � eld according to the ansatz giveninvestigation of how back� ow eŒects in� uence the

rotational motion of the system, we rewrite this term by by equation (5 f ). This is the case studied in this work.
The key result of the present work is the renormalizationthe aid of equations (44). Introducing the abbreviations

of the switching equation which, in its � nal form, can
to 5 (t5 Õ t1 ) (45 a)

be expressed by equation (48). From this equation one
notices that the qualitative behaviour of the dielectric

gA 5
1
2

(mo 1 m2 Õ 2l1 1 l4 ) (45 b)
response of the system is unaŒected by the back� ow.
However, the Goldstone mode rotational viscosity,
regulating the relaxation frequency of the system, isgC 5

1
2

(m4 1 m5 1 2l2 Õ 2l3 1 l5 1 l6 ) (45 c)
renormalized accordingly. Thus we can de� ne an eŒective
Goldstone mode rotational viscosity according toequations (44) can then be written in a more condensed
equation (49). It can be proven [6] by the study ofform:
entropy production that the viscosity coe� cient l5 must

v ¾ (gA 1 gC cos2 w) 1 u ¾ gC sin w cos w 1 twÇ sin w 5 0 be positive. Concerning the two viscosity coe� cients to
and gA , which enter the renormalization factor, it is(46 a)
possible to show [6] that these must also be strictly

v ¾ gC sin w cos w 1 u ¾ (gA 1 gC sin2 w) Õ twÇ cos w 5 0. positive for a system composed of molecules of rod-like
symmetry. The inequalities relevant to the present study(46 b)
can now be summarized as

From these two equations v ¾ and u ¾ can be expressed as
l5 > 0, to > 0, gA > 0, |gC | < gA (50)

v ¾ 5 Õ
t

gA
wÇ sin w (47 a)

and we can conclude that the renormalization of cG is
such that ceff

G always decreases due to the back� ow. Thus
the corresponding relaxation frequency [4, 19]u ¾ 5

t

gA
wÇ cos w. (47 b)

Substituting equation (47) into equation (37), the � nal fG 5
B3q2

2pcG
(51)

form of the renormalized switching equation is obtained:

always increases when back� ow is present in the system.
B3w ² Õ Po E sin w 5 A2l5 Õ

t2
o

gA
B wÇ . (48) The conclusion that back� ow eŒects speed up the

response of the system is consistent with the results from
the calculations by Carlsson et al. [16, 17] where it isComparing this equation with equation (4), one con-
shown how back� ow decreases the response time of thecludes that back� ow eŒects in� uence the rotational motion
switching in a surface stabilized liquid crystal cell.of the director in such a way that the rotational viscosity

In equations (20) the scaling of the material para-cG is renormalized into an eŒective rotational viscosity
meters with respect to the tilt is given. Using this scaling,according to
one can rewrite the expression for ceff

G as

ceff
G 5 2l5 Õ

t2
o

gA
. (49)

ceff
G 5 C2lÅ 5 Õ

(tÅ 5 Õ tÅ 1 )2

gA
Dh2. (52)

6. Discussion
In this work the role of back� ow eŒects in the It is the quantity within the parenthesis that corresponds

to the physical viscosity of the rotational motion of theswitching dynamics of a ferroelectric SmC* liquid
crystalline cell has been theoretically investigated. The system [37], while the factor h2 is merely a geometrical

factor present because the motion along the smecticgeometry of the system studied is depicted in � gure 1. If
the sample studied is su� ciently thin, and the director is cone degenerates towards one point when the system
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[7] Andersson, G ., Carlsson, T., Lagerwall, S. T.,approaches the SmC*–SmA* phase transition. In con-
and Matuszczyk, M ., 1993, presented at the 4thclusion, in the present work we have shown how back-
International Ferroelectric Liquid Crystal Conference,

� ow eŒects in� uence the behaviour of a SmC* liquid Tokyo, Japan (1993) .
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The answer to the question of how pronounced back- Cryst., 2, 131.
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L iq. Cryst., 9, 661.by how large the renormalization of cG is, and can be
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Cryst., 15, 461; Errata, 1994, L iq. Cryst., 17, 147.
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clear from other experiments [38] that the coupling [25] Ostrovski, B. I., Rabinovich, A. Z., Sonin, A. S.,

Strukov, B. A., and Taraskin, S. A., 1978,between director reorientations and macroscopic � ow in
Ferroelectrics, 20, 189.the SmC* liquid crystalline systems can be important.

[26] Martinot-Lagarde, Ph., and Durand, G ., 1981, J. deThus one of the urgent tasks to be undertaken in current
Physique (Paris), 42, 269.

reasearch concerning the dynamical behaviour of the [27] Pavel, J., and Glogarova, M ., 1987, Ferroelectrics,
SmC* phase is to determine the viscosity coe� cients of 76, 221.

[28] Bahr, Ch., Heppke, G ., and Sharma, N . K ., 1987,this system experimentally.
Ferroelectrics, 76, 151.

[29] Carlsson, T., 2000, L iq. Cryst., 27, 957.
[30] Carlsson, T., 1986, Phys. Rev. A, 34, 3393.

References [31] Carlsson, T., Stewart, I. W., and Leslie, F . M ., 1992,
[1] Xue, J. Z., Handschy, M . A., and Clark, N . A., 1987, J. Phys. A, 25, 2371.

Ferroelectrics, 73, 305. [32] Jones, J. C., Raynes, E. P., Towler, M . J., and
[2] Andersson, G ., Dahl, I., Lagerwall, S. T., and Sambles, J. R ., 1990, Mol. Cryst. liq. Cryst. L ett., 7, 91.

Skarp, K ., 1987, Mol. Cryst. liq. Cryst., 144, 105. [33] Osipov, M . A., Sluckin, T. J., and Terentjev, E. M .,
[3] F ilipic, C., Carlsson, T., Levstik, A., Zeks, B., 1995, L iq. Cryst., 19, 197.

Blinc, R ., Gouda, F ., Lagerwall, S. T., and Skarp, K ., [34] Dumrongrattana, S., and Huang, C. C., 1986, Phys.
1988, Phys. Rev. A, 38, 5833. Rev. L ett., 56, 464.

[4] Carlsson, T., Zeks, B., F ilipic, C., and Levstik, A., [35] Carlsson, T., Zeks, B., Levstik, A., and F ilipic, C.,
1990, Phys. Rev. A, 42, 877. 1987, Phys. Rev. A, 36, 1484.

[5] Leslie, F . M ., Stewart, I. W., and Nakagawa, M ., [36] Clark, N . A., and Lagerwall, S. T., 1980, Appl. Phys.
1991, Mol. Cryst. liq. Cryst., 198, 443. L ett., 36, 899.

[6] Carlsson, T., Leslie, F . M ., and Clark, N . A., 1995, [37] Carlsson, T., and Zeks, B., 1989, L iq. Cryst., 5, 359.
[38] Jakli, A., and Saupe, A., 1991, L iq. Cryst., 9, 519.Phys. Rev. E, 5, 4509.

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
8
:
0
5
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1


